首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42872篇
  免费   3084篇
  国内免费   841篇
电工技术   422篇
综合类   3565篇
化学工业   10847篇
金属工艺   1199篇
机械仪表   590篇
建筑科学   5782篇
矿业工程   2020篇
能源动力   5745篇
轻工业   2058篇
水利工程   1401篇
石油天然气   573篇
武器工业   45篇
无线电   916篇
一般工业技术   5926篇
冶金工业   1877篇
原子能技术   287篇
自动化技术   3544篇
  2024年   60篇
  2023年   1434篇
  2022年   1366篇
  2021年   1595篇
  2020年   2247篇
  2019年   2093篇
  2018年   1449篇
  2017年   1802篇
  2016年   2567篇
  2015年   2441篇
  2014年   3481篇
  2013年   3559篇
  2012年   3055篇
  2011年   3025篇
  2010年   2642篇
  2009年   2619篇
  2008年   1406篇
  2007年   2198篇
  2006年   1999篇
  2005年   1236篇
  2004年   722篇
  2003年   768篇
  2002年   910篇
  2001年   748篇
  2000年   429篇
  1999年   514篇
  1998年   278篇
  1997年   25篇
  1996年   12篇
  1995年   7篇
  1994年   8篇
  1993年   7篇
  1992年   4篇
  1991年   3篇
  1990年   3篇
  1988年   4篇
  1987年   2篇
  1985年   4篇
  1984年   6篇
  1983年   7篇
  1982年   8篇
  1981年   1篇
  1980年   7篇
  1979年   11篇
  1978年   2篇
  1977年   2篇
  1976年   5篇
  1975年   3篇
  1974年   5篇
  1951年   16篇
排序方式: 共有10000条查询结果,搜索用时 160 毫秒
1.
Generally, white-flowering horse-chestnut seed (WFHC) found in roadsides, parks and gardens, which spills around and causes environmental pollution, is defined as waste-bio material. This study is quite remarkable as it gives WFHC a new field of usage and literally prioritizes the environment. Here, waste-bio WFHC was tested as supporter for tri-metallic RuNiPd nanoclusters in the eco-friendly dehydrogenation of dimethylamine-borane (DMAB). Core-shell-looking tri-metallic RuNiPd@WFHC, with 264.09 ± 45.55 nm particle size, were in-situ synthesized throughout dehydrogenation of DMAB at 35.0 ± 0.1 °C. The WFHC and tri-metallic Ru2.00Ni1.86Pd1.00@WFHC NCs were characterized by advanced analysis and their surface morphologies were studied in detail using adsorption models. The N2 adsorption-desorption and logarithmic-Freundlich plots indicated that surface morphologies have heterogeneous multi-layer and typical Type-III isotherm with mesoporous surfaces. Also, detailed kinetic studies were actualized on the dehydrogenation of DMAB catalyzed by tri-metallic Ru2.00Ni1.86Pd1.00@WFHC NCs with 158 h?1 TOF value.  相似文献   
2.
To improve the safety of wet dust removal systems for processing magnesium-based alloys, a new method is proposed for preventing hydrogen generation. In this paper, hydrogen generation by Mg–Zn alloy dust was inhibited with six common metal corrosion inhibitors. The results showed that sodium dodecylbenzene sulfonate was the best hydrogen inhibitor, while CeCl3 enhanced hydrogen precipitation. The film-forming stability of sodium dodecylbenzene sulfonate was tested with different contents, temperatures, Cl? concentrations and perturbation rates. The results showed that this inhibitor formed stable protective films on the surfaces of Mg–Zn alloy particles, and adsorption followed the Langmuir adsorption model.  相似文献   
3.
Rip currents near coastal structures commonly occur in Lake Michigan in the Great Lakes region of the United States. Lack of timely warning due to undocumented characteristics of rip currents and no assessment tool can contribute to tragic drownings incidents. In this paper, we characterized rip current occurrences near breakwater structures and developed an assessment tool for providing timely rip current warnings to beachgoers at the study site, City of Port Washington, WI. Characteristics of rip currents near the structure were observed from field measurements or visual images. Deflection rip currents had speeds of ~ 0.2 m/s and lasted for several hours. The rip current occurrences were associated with environmental proxies. It was found that rip currents can occur even when the water appears calm near the structure. A Structure Rip Checklist and Assessment Matrix (SRiCAM) with a four-tiered risk was developed and validated using observations. Furthermore, the SRiCAM was integrated into cyberinfrastructure with a data contingency plan to provide real-time warnings to the public. The applicability of the SRiCAM to other locations across Lake Michigan was further tested and results are promising. Overall, the SRiCAM has the potential to be widely extended to foster recreational water safety and resilience to rip current hazards in the Great Lakes.  相似文献   
4.
In this paper, a new kinetic model considering both oxidation and volatilization kinetics is established and applied to analyze the oxidation of SiC-B4C-xAl2O3 ceramics and other systems in various oxidation conditions. The effects of diffusion area and volume changes during the oxidation process are considered in this model. The physical meaning of each parameter in this model is explicit and simple. According to this model, the diffusion coefficient of species and the corresponding diffusion activation energy are easily available. The practicability of this model is well verified by the experimental data of SiC-B4C-xAl2O3 and other systems oxidized under different conditions. In addition, the practice shows that the model is applicable not only to the systems where oxidation and volatilization coexist, but also to the system where only oxidation plays a major role. We hope the model proposed in this work can be used in other materials with more complex environments.  相似文献   
5.
In the last few decades, global warming, environmental pollution, and an energy shortage of fossil fuel may cause a severe economic crisis and health threats. Storage, conversion, and application of regenerable and dispersive energy would be a promising solution to release this crisis. The development of porous carbon materials from regenerated biomass are competent methods to store energy with high performance and limited environmental damages. In this regard, bio-carbon with abundant surface functional groups and an easily tunable three-dimensional porous structure may be a potential candidate as a sustainable and green carbon material. Up to now, although some literature has screened the biomass source, reaction temperature, and activator dosage during thermochemical synthesis, a comprehensive evaluation and a detailed discussion of the relationship between raw materials, preparation methods, and the structural and chemical properties of carbon materials are still lacking. Hence, in this review, we first assess the recent advancements in carbonization and activation process of biomass with different compositions and the activity performance in various energy storage applications including supercapacitors, lithium-ion batteries, and hydrogen storage, highlighting the mechanisms and open questions in current energy society. After that, the connections between preparation methods and porous carbon properties including specific surface area, pore volume, and surface chemistry are reviewed in detail. Importantly, we discuss the relationship between the pore structure of prepared porous carbon with surface functional groups, and the energy storage performance in various energy storage fields for different biomass sources and thermal conversion methods. Finally, the conclusion and prospective are concluded to give an outlook for the development of biomass carbon materials, and energy storage applications technologies. This review demonstrates significant potentials for energy applications of biomass materials, and it is expected to inspire new discoveries to promote practical applications of biomass materials in more energy storage and conversion fields.  相似文献   
6.
《Ceramics International》2022,48(12):16599-16610
Separation membranes that are prepared from piezoelectric ceramics can generate ultrasound on-line to maintain surface cleanliness. Here, a lead-free piezoelectric support is presented consisting of quartz. The Na2O and Al2O3 were employed as sintering aids to improve the mechanical performance of piezoelectric quartz support while avoid the formation of no-piezoelectric cristobalite. A ZrO2-based thin microfiltration membrane layer was applied on the optimized support. The membrane structure, thus obtained had an average pore size and ultrasonic emission of 270 nm and 5.1 mV, respectively. The stationary permeance of the membrane in the treatment of oil-in-water emulsion was 163 L m?2?h?1?bar?1 (LMH/bar). With the application of alternating voltages of 60 V and 100 V, the permeance increased to 198 and 225 LMH/bar, respectively, and the oil rejection was maintained above 97%. The in-situ ultrasound directly acted on membrane surface, so it removed more fouling resistance at lower power than the external one.  相似文献   
7.
《Ceramics International》2022,48(17):24157-24191
Great progress in the development of low-cost ceramic membranes from alternative materials have been achieved recently towards various application especially water and wastewater treatment. However, their significance has not been fully recognized and understood especially in term of their microstructural analysis such as formation of grain growth and microcracks. This review paper summarizes fabrication method, alternative materials, microstructure, wettability, mechanical properties and application of low-cost ceramic membrane. The fabrication method including slip casting, tape casting, extrusion, pressing method and phase inversion technique are described. Alternative materials used in low-cost ceramic membrane fabrication are discussed and categorized into clays, agricultural waste, industrial waste and animal bone waste. The mechanisms of morphology formation, microstructure and wettability properties are analysed. Modification strategies for the surface of low-cost ceramic membrane are discussed, and classified into modification for separation application, modification for photocatalytic application and modification for membrane distillation and membrane contactor system. Modification improves the membrane structure by changing the pore size, porosity and wettability properties of low-cost ceramic membranes. Mechanical properties of low-cost ceramic membranes are also discussed in detail towards several mechanism, like grain growth phenomenon and formation of microcracks which also considered as membrane defects. Grain growth phenomenon can be divided into normal and abnormal grain growth. Meanwhile, formation of microcracks could be occurred in single-phase polycrystalline ceramics that have anisotropic grains or biphasic polycrystalline grains. The application of low-cost ceramic membrane in seawater desalination, oily wastewater treatment, heavy metal adsorption, textile separation and photocatalytic application are reviewed. Finally, some possible opportunities and challenges for further development of low-cost ceramic membrane are pointed out.  相似文献   
8.
Oxygen blocking the porous transport layer (PTL) increases the mass transport loss, and then limits the high current density condition of proton exchange membrane electrolysis cells (PEMEC). In this paper, a two-dimensional transient mathematical model of anode two-phase flow in PEMEC is established by the fluid volume method (VOF) method. The transport mechanism of oxygen in porous layer is analyzed in details. The effects of liquid water flow velocity, porosity, fiber diameter and contact angle on oxygen pressure and saturation are studied. The results show that the oxygen bubble transport in the porous layer is mainly affected by capillary pressure and follows the transport mechanism of ‘pressurization breakthrough depressurization’. The oxygen bubble goes through three stages of growth, migration and separation in the channel, and then be carried out of the electrolysis cell by liquid water. When oxygen breaks through the porous layer and enters the flow channel, there is a phenomenon that the branch flow is merged into the main stream, and the last limiting throat affects the maximum pressure and oxygen saturation during stable condition. In addition, increasing the liquid water velocity is helpful to bubble separation; changing the porosity and fiber diameter directly affects the width of pore throat and the correlative capillary pressure; increasing porosity, reducing fiber diameter and contact angle can promote oxygen breakthrough and reduce the stable saturation of oxygen.  相似文献   
9.
10.
Reasonable construction of heterostructure is of significance yet a great challenge towards efficient pH-universal catalysts for hydrogen evolution reaction (HER). Herein, a facial strategy coupling gas-phase nitridation with simultaneous heterogenization has been developed to synthesize heterostructure of one-dimensional (1D) Mo3N2 nanorod decorated with ultrathin nitrogen-doped carbon layer (Mo3N2@NC NR). Thereinto, the collaborative interface of Mo3N2 and NC is conducive to accomplish rapid electron transfer for reaction kinetics and weaken the Mo–Hads bond for boosting the intrinsic activity of catalysts. As expected, Mo3N2@NC NR delivers an excellent catalytic activity for HER with low overpotentials of 85, 129, and 162 mV to achieve a current density of 10 mA cm?2 in alkaline, acidic, and neutral electrolytes, respectively, and favorable long-term stability over a broad pH range. As for practical application in electrocatalytic water splitting (EWS) under alkaline, Mo3N2@NC NR || NiFe-LDH-based EWS also exhibits a low cell voltage of 1.55 V and favorable durability at a current density of 10 mA cm?2, even surpassing the Pt/C || RuO2-based EWS (1.60 V). Consequently, the proposed suitable methodology here may accelerate the development of Mo-based electrocatalysts in pH-universal non-noble metal materials for energy conversion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号